Spring Nutrient Flux to the Gulf of Mexico and Nutrient Balance in the Mississippi River Basin

C.S. Snyder, PhD, CCA
Nitrogen Program Director, Conway, AR

T. Scott Murrell, PhD
Director, North American Program
West Lafayette, IN

ASA-CSSA-SSSA Meetings
Long Beach, CA November 2-5, 2014

www.ipni.net
Introduction

- **Hypoxia Task Force Action Plans** - call for a 45% reduction in total N and total P loads via the Mississippi and Atchafalaya rivers to:
 - reduce summer hypoxia in the northern Gulf of Mexico
 - improve water quality throughout the MARB

- **Modeled nutrient loading and hypoxic area**
 - May to June total N load & ocean dynamics ($R^2 = 0.45$)
 - May nitrate-N load, 1978-2004 (included hindcasting; $R^2 = 0.82$)
 - Turner et al. 2006. Predicting summer hypoxia in the northern Gulf of Mexico… Marine Pollution Bull. 52:139-148
 - May nitrate-N load ($R^2 = 0.42$); May streamflow and May nitrate-N and Feb. TP ($R^2 = 0.60$ to 0.80)
 - May nitrate-N load vs. **hypoxic volume** ($R^2 = 0.58$)
Introduction

- Modeled nitrate loading or “yields” vs. nutrient use
 - March-June nitrate delivery to Gulf for 1990-2002 vs. “fertilizer N” runoff (59%), atmospheric nitrate deposition (17%), animal waste (13%), municipal waste (11%) ($R^2 = 0.65$)
 - April-July nitrate delivery ($R^2 = 0.86$)
 - January-June nitrate “yields” (i.e. mass loss per unit area, kg N ha$^{-1}$) for 1997-2006, 8 crops ($R^2=0.82$)
 - Nitrate yield = cm of river flow x ((0.0112 x kg fertilizer N ha$^{-1}$)$^{0.7783}$ + (0.1988 x kg N ha$^{-1}$ consumed by humans) + (0.21750 x fraction of county drained)
 - N inputs were not a good predictor of riverine nitrate N “yields”, nor were other N balances
 - greatest nitrate N “yields” corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota and across Iowa, Illinois, Indiana, and Ohio
 - David et al. 2010. Sources of nitrate yields in the Mississippi River Basin. J. Environ. Qual. 39:1657–1667
Nutrient Loss Reduction Strategies in MARB

- Plans completed in 9 states, pending in 2 others
 - primarily focused on annual total N and total P loss reductions from agricultural and other lands to protect surface (and subsurface) water quality
 - BMP science to reduce annual N and P losses has been/is being evaluated and advocated
- Much of the N and P loss from agricultural fields is associated with peak flows and drainage events that pose risks for summer algae blooms and hypoxia
 - peak runoff and drainage usually occurs during spring in much of the MARB
- Should the agricultural BMP and nutrient loss reduction strategies center more on the **spring** (specifically April, May) nitrate-N and ortho-P losses?
Objectives

• For available data in MARB, 1987 to 2011:
 – compare April, May, and April plus May nitrate-N flux and ortho-P flux to northern Gulf of Mexico against:
 • Total N input (annual)
 • Fertilizer N input (annual)
 • Cropland area harvested
 • Crop harvest removal of N
 • Net annual N balance
 • Net annual N per cropland ha

• Data/information sources for MARB
 • Nutrient flux – USGS (B. Aulenbach et al. using LOADEST AMLE)
 • Crop harvested area – USDA NASS
 • Fertilizer consumption (annual) - AAPFCO & TFI
 • MARB nutrient metrics – IPNI NuGIS (includes 21 crops)
History

- Development began in 2006 (6-yr effort)
- Preliminary NuGIS – Summer of 2010
 - Bulletin & web tool
 - Reviewed and extensively revised
- Final version - Nov. 1, 2011
 - Improved accuracy
 - Export data files and maps
 - Data from 1987-2007; 2008-2011 added
 - Improved procedure for estimating nutrient removal by “other crops”

http://www.ipni.net/nugis
Methods – basic model

A simple partial nutrient balance algorithm

- Farm fertilizer
- Recoverable manure
- Biological N fixation

Not considered:
- Atmospheric deposition
- Nutrients in irrigation water
- Biosolids application
- Soil erosion
- Gaseous N emissions or leaching

1987 to 2007 in 5-yr increments set by Census of Agriculture (COA)
1987 Estimated N Removal to Use Ratio by Hydrologic Region

Nutrient Removal by Crops \(\frac{(\text{adj})}{(\text{Fertilizer} + \text{Recoverable Manure Nutrients} + \text{Legume N Fixation})} \)

<table>
<thead>
<tr>
<th>Hydrologic Region</th>
<th>RatioN</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.89</td>
</tr>
<tr>
<td>#2</td>
<td>0.82</td>
</tr>
<tr>
<td>#3</td>
<td>0.47</td>
</tr>
<tr>
<td>#4</td>
<td>0.75</td>
</tr>
<tr>
<td>#5</td>
<td>0.62</td>
</tr>
<tr>
<td>#6</td>
<td>0.73</td>
</tr>
<tr>
<td>#7</td>
<td>0.73</td>
</tr>
<tr>
<td>#8</td>
<td>0.96</td>
</tr>
<tr>
<td>#9</td>
<td>0.83</td>
</tr>
<tr>
<td>#10</td>
<td>0.87</td>
</tr>
<tr>
<td>#11</td>
<td>0.65</td>
</tr>
<tr>
<td>#12</td>
<td>0.45</td>
</tr>
<tr>
<td>#13</td>
<td>0.76</td>
</tr>
<tr>
<td>#14</td>
<td>0.93</td>
</tr>
<tr>
<td>#15</td>
<td>0.53</td>
</tr>
<tr>
<td>#16</td>
<td>0.94</td>
</tr>
<tr>
<td>#17</td>
<td>0.81</td>
</tr>
<tr>
<td>#18</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Legend:
- RatioN 0.0 - 0.30: green
- RatioN 0.31 - 0.50: dark green
- RatioN 0.51 - 0.70: yellow-green
- RatioN 0.71 - 0.90: light yellow
- RatioN 0.91 - 1.10: yellow
- RatioN 1.11 - 1.50: orange-yellow
- RatioN 1.51 - 3.00: orange
- RatioN > 3.00: red
<table>
<thead>
<tr>
<th>Independent variable</th>
<th>NO$_3$-N flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April</td>
</tr>
<tr>
<td>Total N input</td>
<td>--</td>
</tr>
<tr>
<td>Harvest removal of N</td>
<td>--</td>
</tr>
<tr>
<td>Cropland harvested</td>
<td>--</td>
</tr>
<tr>
<td>Net annual N balance</td>
<td>--</td>
</tr>
<tr>
<td>Net annual N per planted cropland hectare</td>
<td>--</td>
</tr>
<tr>
<td>Fertilizer N input</td>
<td>--</td>
</tr>
</tbody>
</table>

* * Slope of the regression is statistically significant at a p-value ≤ 0.05 or a p-value ≤ 0.01 (after rounding), respectively, when all data are included;

* * * Statistical significance of the slope is conditional upon removing either a suspected outlier or a suspected influential point;

** -- Not significant under either of the cases above
May NO₃-N Flux vs. Total N Inputs: All data considered

- Regression
- 95% Confidence Interval
- 95% Prediction Interval

Adj. R Squared = 0.457
p-value = 0.0273
Y = -107 + 21.027X
Slope 95% Confidence = 21.027 +/- 17.894
Summary of Regression Analyses:
MARB Ortho Phosphate-P Flux

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Ortho phosphate-P flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>April</td>
</tr>
<tr>
<td>Total P input</td>
<td>--</td>
</tr>
<tr>
<td>Harvest removal of P</td>
<td>*</td>
</tr>
<tr>
<td>Cropland harvested</td>
<td>*</td>
</tr>
<tr>
<td>Net annual P balance</td>
<td>--</td>
</tr>
<tr>
<td>Net annual P per planted cropland hectare</td>
<td>--</td>
</tr>
<tr>
<td>Fertilizer P input</td>
<td>--</td>
</tr>
</tbody>
</table>

*, ** Slope of the regression is statistically significant at a p-value ≤ 0.05 or a p-value ≤ 0.01 (after rounding), respectively, when all data are included; c*, c** Statistical significance of the slope is conditional upon removing either a suspected outlier or a suspected influential point; -- Not significant under either of the cases above.
Interpretation

• Total fertilizer input, total nutrient input, and nutrient removal with harvest may be useful for explaining nutrient fluxes in May, or April and May combined.

• For P flux only:
 – P removal with harvest may be useful for explaining P flux in April.
 – The amount of cropland harvested may be useful for explaining P flux in April, May, and April and May combined.
Future Plans

• Continue these analyses as the NuGIS database is populated with more annual data

• Work with agribusiness, university, government, and conservation partners to advance 4R Nutrient Stewardship implementation and actions to increase crop yields and in-field nutrient retention

• Monitor trends in nutrient use and management metrics

• Encourage documentation and tracking of nutrient performance by farmers on individual fields and farms